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In this paper we study two-dimensional flow around regular polygons with an
arbitrary but even number of edges N and one apex pointing to the free stream, with
comparison to circular-cylinder flow. Both inviscid flow and low-Reynolds-number
viscous flow are addressed. For inviscid flow, we obtained the exact solution for
pure potential flow through Schwarz–Christoffel transformation, with the emphasis
on the role of edge number, N , on the flow details. We also studied the behaviour,
stationary lines and stability of vortex pair and found new stationary lines compared
to circular cylinder. For viscous flow we derived the equation of stream function
in the mapped (circle) domain, based on which approximate expressions for the
critical Reynolds numbers and Strouhal number, as functions of the edge number,
are obtained. The Reynolds number is based on the diameter of the circumscribed
circle. For the steady flow, the first critical Reynolds number is a monotonically
decreasing function of N , while N → ∞ corresponds to that for circular cylinder. The
bifurcation point is ahead of the bifurcation point for circular cylinder. For unsteady
flow, the critical Reynolds number for vortex shedding and the Strouhal number are
both monotonically decreasing functions of N .

1. Introduction
The flow past cylinders contains complex phenomena such as separation and vortex

shedding. The basic features of the flow past circular cylinders are well known (see
Coutanceau & Daefaye 1991; Williamson 1996). Though a huge amount of results
exist for flow around circular cylinder, that around polygons is much less studied.
Most of the studies for polygons are for triangles, squares and rectangles, and it is
rare to consider polygons with a large N (edge number), with the exceptions of Skews
(1991, 1998), who studied autorotational behaviour for polygons with N up to 8, and
Tian (1996), who discovered a minimum drag for polygons with N =24 for a range
of Reynolds number.

The critical Reynolds numbers for polygons with small number of edges were
studied by Okajima (1982), Jackson (1987), Franke (1991) and Klekar & Patankar
(1992), amongst others. The first critical Reynolds number, at which separation
appears, for the flow past squares with one edge facing the free stream is Recr1 < 1
(see Franke 1991), smaller than that for circular cylinder, which is between 5 and 7,
varying with researchers (see Taneda 1956; Dennis & Chang 1970; Noack &
Eckelmann 1994b; Brøns, Jakobsen & Niss 2007). The Reynolds number for squares
is based on the side length Ds , while for circular cylinder it is based on the diameter
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D. The second critical Reynolds number (Recr2), at which unsteady flow forms, has
been studied for the flow past squares with one edge facing the free stream. Okajima
(1982) found Recr2 � 70 by experiment, while Klekar & Patankar (1992) got Recr2 = 50
by a stability analysis. For triangular cylinder, Jackson (1987) reported the critical
Reynolds number to be equal to 34.318 for an isosceles triangle with base 1, height
0.8 and one apex pointing to the free stream, using a finite-element method. The
characteristic length in obtaining Re is the base of the isosceles triangle. Zielinska &
Wesfreid (1995) numerically investigated the wake of flow past an equilateral triangle
and found a critical Reynolds number to be 38.3. This was confirmed experimentally
by Wesfreid, Goujon-Durand & Zielinska (1996). As a contrast, the second critical
Reynolds number for circular cylinder is about 45–54 (see Jackson 1987; Zebib 1987;
Dušek, Gal & Fraunié 1994; Noack & Eckelmann 1994a).

Flow structure including the recirculation length and vortex shedding has been
studied by Breuer et al. (2000) and Sharma & Eswaran (2004), amongst others.
For instance, Breuer et al. (2000) used the lattice Boltzmann and finite-volume
methods to study the non-dimensional recirculation length lr , defined by the distance
from the rear stagnation point to the point at which separated flow reattaches, for
channel flow past square cylinder with the block ratio 1/8 and found the fit formula
lr = −0.065 + 0.0554Res for 5 � Res � 60, where Res is the Reynolds number based
on the side length, Ds . Sharma & Eswaran (2004) numerically studied the channel
flow past square cylinder, with Prandtl number 0.7 and block ratio 5 %, and found
lr = 0.0685Res for 5 � Res � 40. De & Dalal (2006) numerically studied the open flow
past an equilateral triangular cylinder with one apex pointing to the free stream
and found the fitted relation lr = 0.075Res , for 10 � Res � 40. In contrast, for circular
cylinder, the fitted relation is lr = 0.06710(±0.0008)Re − 0.405(±0.035) (see Zielinska
et al. 1997) or lr = 0.068Re − 0.428 (see Brøns et al. 2007). For the unsteady flow past
polygons, the Strouhal number increases linearly with Re−1/2. For channel flow past
square cylinders and triangular cylinders with base 1 and height 0.5, the correlations
are St = 0.2131 − 0.5073/

√
Res and St = 0.2294 − 0.4736/

√
Res for 30 � Re � 200,

according to the numerical results of Abbassi, Turki & Nasrallah (2002), compared
with St =0.2684 − 1.0356/

√
Re for the circular situation, experimentally investigated

by Fey, König & Eckelmann (1998).
Drag reduction for polygons has been studied by Igarashi & Ito (1993), Igarashi

(1997), Sakamoto et al. (1997) and Zhou, Cheng & Hung (2005). They used a
small rod or a flat plate in the upstream of the cylinder to reduce the drag of
square cylinder. Tian (1996) compared the drag coefficient of circular cylinders with
those of polygonal cylinders with 15, 18, 24, 30 and 36 sides and found the drag
coefficient of polygons with 24 sides decreased 40 % compared with circular cylinder,
for 1.2 × 105 <Re < 3.6 × 105.

Skews (1991, 1998) studied the condition of autorotation for polygons in an
upstream vane. He found that only polygons with N < 8 can autorotate, and the
lift forces generated by rotating polygons are larger than those by spinning circular
cylinder at the same rotation speed.

The inviscid flow past polygonal obstacles has been studied using computer for
pure potential flow (see Elcrat & Trefethen 1986) and for vortex flows (see Clements
1973; Kiya, Saskai & Arie 1982). For pure potential flow, Elcrat & Trefethen (1986)
solved the Kirchhoff flow past polygonal obstacles, including plate with or without
spoiler, wedge, equilateral triangle and bracelet, using a Fortran package KIRCH1.
For vortex flow, Clements (1973) developed the inviscid model for vortex shedding
behind a square-based section and predicted the Strouhal number in good agreement
with experimental results. Kiya et al. (1982) used the discrete-vortex simulation of the
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Figure 1. Two domains of flow past polygons and their mapping relationship: (a) physical
domain; (b) mapped domain.

separation bubble over a two-dimensional blunt flat plate with finite thickness and
right-angled corners and obtained reasonable prediction of time mean and root mean
square (r.m.s.) values of the flow field.

In the previous studies for flows around polygons, the number of edges is small.
There is no consideration of the influence of the edge number on the general
characteristics of the flow. There is no general comparison between the flow around
polygons and that around circular cylinders.

In this paper we will address two-dimensional flow past polygons with arbitrary but
even number of edges, with one apex pointing to the free stream. The influence of the
edge number on the flow characteristics will be specially considered, with comparison
to circular cylinders; the latter will be shown to be a special case of polygons when
the edge number, N , tends to infinity. In this paper we do not consider odd values
of N or the case of inclined flow direction. Some general features of polygon flows
compared to those of circular cylinder will be studied by transforming the equations
into the mapped domain through Schwarz–Christoffel mapping (see figure 1). The
context of this paper is given below.

In § 2, we consider inviscid flow past polygons and analyse the role of the edge
number and the difference of flow between polygons and circular cylinders. First we
build potential flow solution using Schwarz–Christoffel transformation and compare
this solution to circular cylinder. We then consider the stationary lines of vortex pair
and study the stability of the vortex pair along its stationary position.

In § 3, we study viscous flow for a Reynolds number low enough to exclude three-
dimensional and turbulent effects. By transforming the equation of the stream function
to a mapped or circular domain, we analyse the general difference of the flow features,
such as the critical Reynolds numbers and Strouhal numbers, between polygons and
circular cylinder. Both steady and unsteady flows are addressed. The analysis will be
compared to or complemented by computational fluid dynamics (CFD).

The main conclusion will be summarized in § 4.

2. Inviscid flow past polygons
This section is divided into two subsections, respectively devoted to pure potential

flow (§ 2.1) and flow with vortex pairs (§ 2.2).

2.1. Pure potential flow past polygons

Below we will find the explicit solution, notably pressure coefficient Cp , of the potential
flow around polygons through Schwarz–Christoffel mapping. When the solution is
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found, we will study the role of the edge number on the pressure distribution on the
polygon surface. We will also be interested in whether the case of circular cylinder is
a limit of polygonal flow when N → ∞.

It is well known that any polygon can be mapped to a circle (see figure 1) through
Schwarz–Christoffel transformation. For regular polygons this transformation is found
to be

z = f (ζ ) = B

(
ζ +

e1

ζN−1
+

e2

ζ 2N−1
+

e3

ζ 3N−1
+ · · ·

)
(2.1)

(see Appendix A for derivation). Here B is calculated by (A 5) and ek by (A 4).
In the mapped domain D̃, the complex potential wB(ζ ) is the same as for a circle,

i.e.

wB(ζ ) = q

(
ζ +

1

ζ

)
, (ζ ∈ D̃), (2.2)

where q = U∞|f ′(∞)| is the free-stream velocity in mapped domain and U∞ is the
free-stream velocity in the physical domain D.

The pressure coefficient Cp,N is related to wB(ζ ) by Bernoulli relation, giving
Cp,N = 1−(1/q2)|(f ′(∞)/f ′(ζ ))(dwB/dζ )|2. Inserting (2.1) and (2.2) into this we obtain

Cp,N = 1 −
∣∣∣∣∣
(

1 − 1

ζ 2

) (
1 − 1

ζN

)−2/N
∣∣∣∣∣
2

. (2.3)

For N → ∞ we recover the pressure coefficient for circular cylinder

Cp,∞ = 1 −
∣∣∣∣
(

1 − 1

ζ 2

)∣∣∣∣
2

, (2.4)

since (1 − 1/ζN )−2/N → 1 for N → ∞. This means that in inviscid case flow around a
circular cylinder is a limit of flow of polygons when the edge number tends to infinity.

We know that potential flow around a circular cylinder is smooth, but this is, as will
be shown, not the case for polygons. Now we study the singularity of the flow and
the dependence of the pressure coefficient on the edge number, N . Notably, we will
show how fast the solution converges to that of circular cylinder when N increases.

The difference of flow between polygons and circular cylinder can be seen more
clearly through (1 − Cp,N )/(1 − Cp,∞), which, when using (2.3) and (2.4), can be
expressed as

1 − Cp,N

1 − Cp,∞
=

∣∣∣∣∣
(

1 − 1

ζN

)−4/N
∣∣∣∣∣ = 1 + O(ρ−N ). (2.5)

Hence the difference vanishes with the −N power of the distance to the centre ρ = |ζ |,
and this difference is evident only near the wall. For region sufficiently far away from
the centre, the potential flow for polygons and circular cylinder is the same.

Substituting ζ = eiφ into (2.3) and (2.4) we find the surface pressure coefficient

C
(s)
p,N = 1 − 4 sin2 φ

∣∣∣∣2 sin
Nφ

2

∣∣∣∣
−4/N

, (2.6)

which reduces to C(s)
p,∞ = 1 − 4 sin2 φ for circular cylinder. For polygons we observe

singularity at the apices with an argument 2kπ/N, (k = 1, 2, . . . , N/2 − 1), where C
(s)
p,N

tends to −∞. Figure 2 displays the surface pressure coefficient for some N-sided
polygons, comparing with those for the circle. Clearly, a pressure drop exists near
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Figure 2. Surface pressure coefficient distribution for unit circles and inscribed regular
polygons, where solid lines stand for circles and dashed lines for polygons: (a) hexagon;
(b) octagon; (c) decagon; (d ) 36-sided polygon.

each apex, and the magnitude of this drop reflects the intensity of singularity for
polygon flow. Clearly, this intensity weakens with increase in N; for instance the
range below a certain value, Cp � −3, becomes narrower with the increasing N .

In order to have some global idea for the singularity intensity as a function of
the edge number, N , we calculate ρk(Cp = −3), the radius of the low-pressure region,
namely the region in which the pressure coefficient is below −3. Around each apex
zk we find the contour of Cp = −3. Assume this contour intersects the surface at z+

k

and z−
k (see figure 3a); then the radius ρk(Cp = −3) is here defined as

ρk(Cp = −3) =

√
|(z+

k − zk)(z
−
k − zk)|. (2.7)

In order to find z
±
k = f (exp(iφ±)) we set C

(s)
p,N defined by (2.6) to −3 so that

∣∣∣∣2 sin
Nφ

2

∣∣∣∣
2/N

− sin φ = 0. (2.8)

Figure 3(b) shows the radius at various apices (numbered as k = 1, 2, . . . , counting
from the rear stagnation point) and for various N . Consider for instance k = 2, the
apex closest to the rear stagnation point; we found a fitted formula ln ρ2 ≈ −0.8546N+
2.7298 according to the data in figure 3(b). For other apices, a similar linear relation
exists. This means that the radius of low-pressure region around each apex vanishes
exponentially with N , i.e. ρ ∼ e−N .
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Figure 3. Low-pressure region radius of apices on polygon surfaces:
(a) definition; (b) values.
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Figure 4. Average surface pressure deviation varying with N .

Finally we calculate the overall difference of the surface pressure between polygons
and circular cylinder, as defined by

�Cp
(N) =

1

π

∫ π

0

∣∣C(s)
p,N (φ) − C(s)

p,∞(φ)
∣∣dφ. (2.9)

Figure 4 shows the �Cp
(N) varying with N . For N sufficiently large, we found that

�Cp
≈ 5.4127

N
. (2.10)

This means that the global difference of pressure between polygons and circles reduces
inversely with N , though the number of singularities is equal to N − 2.

2.2. Vortex motion in inviscid flow

In this subsection we consider the behaviour of vortex pairs around polygons. Vortex
pairs around circular cylinder have been studied by Föppl (1913), Elcrat et al. (2000),
Cai, Liu & Luo (2003) and Zannetti (2006), amongst others. The inviscid separated
flows can be regarded as stackings of pure potential and series of point vortices.
We are notably interested in the difference of the behaviour of vortex pair between
polygons and circular cylinder. In the following we first consider the velocity of vortex
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pair compared to circular cylinder. We then study the stationary position of vortex
pair. In the end we consider the stability of the stationary position.

2.2.1. Relationship of vortex velocities between polygons and circles in mapped domain

The relationship between the velocities of vortices in two domains under a conformal
mapping is known as the ‘Routh chain rule’ (see Routh 1881; Lin 1941; Saffman 1992;
Newton 2000). Routh chain rule has already been used to simulate vortex motions
outside of many complex shapes, such as square-based section, inclined plane and
blunt flat plate with finite thickness (see Clements 1973; Sarpkaya 1975; Kiya et al.
1982).

Consider an assembly of M vortices moving inside the physical domain (x, y) ∈ DN

(see figure 1a). The circulation and position of each vortex respectively are κj and
zj = xj + iyj , where j = 1, 2, . . . , M . Another circular-boundary physical domain D∞
with the same assembly of vortices is considered, which represents the inviscid flow
past circles. According to Routh chain rule, the velocities in these two physical
domains have a relation as (see Lin 1941a, b)

ż∗
j = uj,N − ivj,N = (uj,∞ − ivj,∞)

1

f ′
j

− κj

4πi

f ′′
j

f ′2
j

, (2.11)

where (uj,N , vj,N ) denotes the velocity of j th vortex outside polygons and (uj,∞, vj,∞)
denotes that outside circles. They are both velocities in physical domain. Equation
(2.11) will be used in § 2.2.3 for stability analysis.

Now we derive the vortex velocities in mapped domain in order to have clear
comparison with circular cylinder. In mapped domain, the j th vortex has a circulation
of κj , the same as that in physical domain, as well as a position of ζj = ξj + iηj .
The position ζj is related to zj by the inverse of Schwarz–Christoffel mapping, i.e.
ζj = f −1(zj ). Taking a differential with respect to time gives

ζ̇ ∗
j =

1

f ′∗
j

ż∗
j (j = 1, 2, . . . , M). (2.12)

Substituting (2.11) into (2.12), we obtain the velocity ζ̇ ∗
j = ũj − iṽj of the j th vortex

in mapped domain,

ũj − iṽj = (uj,∞ − ivj,∞)
1

|f ′
j |2 − κj

4πi

1

|f ′
j |2

f ′′
j

f ′
j

, (2.13)

where (ũj , ṽj ) is defined as the velocity of the j th vortex in mapped domain and
1/|f ′|2 is the deformation factor γ 2, which will frequently appear in the next parts
of this paper and is discussed in Appendix B. Inserting γ 2 = 1/|f ′|2 into (2.13), we
obtain

1

γ 2
(ũj − iṽj ) = (uj,∞ − ivj,∞) − κj

4πi

f ′′
j

f ′
j

. (2.14)

Substituting (B 10) for f ′′/f ′ into (2.14) and separating the real and imaginary parts,
we obtain

1

γ 2
ũj = uj,∞ − κj

8π

[
(γ 2)η
γ 2

]
j

,
1

γ 2
ṽj = vj,∞ +

κj

8π

[
(γ 2)ξ
γ 2

]
j

. (2.15)

The equations in (2.15) define the relationship of vortex velocities outside of
polygons and circles, in the same space (mapped domain). The differences can be
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Figure 5. Distribution of additional velocities, described by gradients of γ 2:
(a) directions; (b) magnitudes.

divided into two parts: (i) additional velocities corresponding to the second terms
in the right of (2.15) and (ii) γ 2 scale of the velocities. The additional velocities
are proportional to the circulation κj and (−(γ 2)η/γ

2, (γ 2)ξ /γ
2). Figure 5 shows

the distribution of (−(γ 2)η/γ
2, (γ 2)ξ /γ

2) in the mapped domain for polygons, e.g.
hexagons. Through the directions of the additional velocities we see that, for a vortex
with positive circulation, added to the circular case is a clockwise rotation around
each apex, compensated by an anticlockwise rotation along each edge. In other words,
added to the circular case is a source in the upstream neighbour of each apex and a
sink in its downstream neighbour. The magnitude of (−(γ 2)η/γ

2, (γ 2)ξ /γ
2) vanishes

linearly with increasing ρ, the distance to the centre, in a double logarithmic figure,
with a slope of −7, corresponding to −N −1 for hexagons. This means the additional
velocity is only evident near the wall, while it vanishes approximately with the −N −1
power as ρ increases.

The scaling factor γ 2 (see Appendix B) reaches a maximal value near the apices
and a minimal value near the midpoints of edges. This means the vortex near the
apices moves fast, while those near the midpoint of edges move slowly in comparison
with circular cylinders.

2.2.2. Stationary lines of vortex pair for polygons

In this subsection we study the stationary lines of symmetric vortex pair outside of
polygons, by using the stationary condition outside symmetric bluff bodies proposed
by Zannetti (2006). Stationary lines are positions at which the vortex pair does not
move.

Assume that in the inviscid flow past polygons or circles, a symmetric vortex pair
with circulations ∓κ locates at ζ and ζ ∗ in mapped domain. Here ζ ∗ is the conjugate
of ζ and represents the location of the lower vortex.

A convenient stationary condition of a pair of vortex with circulations ∓κ and
locating at z0 and z∗

0 in physical domain was derived by Zannetti (2006). This condition
is expressed as

Re

[
d2wB/dz2

(dwB/dz)2

]
= 0 (2.16a)
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Figure 6. Stationary lines for unit circles and their inscribed polygons: (a) unit circles;
(b) hexagons; (c) octagons; (d ) decagons.

for the stationary position and

κ = 4π

{
1

Im(wB)
+ Im

[
d2wB/dz2

(dwB/dz)2

]}−1

(2.16b)

for the corresponding circulation. Here wB is the pure complex potential.
Substituting (2.1) and (2.2) into (2.16a) gives

Re

[
d2wB/dz2

(dwB/dz)2

]
= Re

[
2ζ

q(ζ 2 − 1)2

(
1 − ζ 2 − 1

ζN − 1

)]
= 0. (2.17)

Figure 6 shows the stationary lines for a vortex pair obtained from (2.17). For the
circular case, there are two stationary lines, the well-known Föppl line I (see Föppl
1913; Elcrat et al. 2000; Zannetti 2006) starting from the rear stagnation point and
the ∞ line starting from the upper point of the circle. The Föppl line has a trajectory
ρ2 − 1 = 2ρη and a circulation κ = 4πqη(1 − 1/r4).

For polygons, besides line I and the ∞ line which are similar to the circular case, we
observe additional lines: i, ii, . . . . These lines start from the apices and end at edges
or others apices. Namely these additional lines form closed curves with the edges.
These closed regions grow smaller with increasing N , see the three curves denoted as
i in figure 6(b–d ) for example. When N → ∞, the additional lines disappear, and we
recover the situation of circular cylinder.

2.2.3. Stability of stationary vortex pair for polygons

We study the stability of a symmetric stationary vortex pair outside of polygons,
using a linear stability analysis method (see Tang & Aubry 1997; Shashikanth et al.
2002; Cai et al. 2003; Protas 2007).

Assume that a vortex pair with a circulation ∓κ locates at z0 = x0 + iy0 and
z∗

0 = x0 − iy0 in physical domain. Suppose the vortex pair undergoes a small arbitrary
displacement, changing from z0 and z∗

0 to z1 and z2, respectively.
According to Shashikanth et al. (2002), Cai et al. (2003) and Protas (2007), the

displacement can be decomposed as a symmetric mode and an antisymmetric mode:

symmetric: z1 = z0 + �z ≡ z, z2 = z∗
0 + �z∗ ≡ z∗, (2.18a)

antisymmetric: z1 = z0 + �z ≡ z, z2 = z∗
0 − �z∗ ≡ 2z∗

0 − z∗. (2.18b)
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Figure 7. Invariants varying with positions for circles and hexagons.

Considering the upper vortex at z = x + iy, the velocity of the vortex centre is (u, v),
where the subscript 1 is dropped for simplicity. Expanding (u, v) around (x0, y0) to first
order gives Ẋ = DX , where X =(x−x0, y−y0)

T ; Ẋ =(u, v)T ; and D= |∂(u, v)/∂(x, y)|0
is a 2 × 2 Jacobian matrix. The invariants of D are computed as

D0 ≡ tr(D) = λ1 + λ2, J0 ≡ |D| = λ1 · λ2, (2.19)

where λ1 and λ2 are the eigenvalues of D.
Cai et al. (2003) proved that the first invariant D0 is zero under both symmetric

and antisymmetric disturbances, and the stability can be determined by the second
invariant J0: J0 > 0 corresponds to a neutral stable centre, while J0 < 0 corresponds
to an unstable saddle.

Now we follow Cai et al. (2003) to compute the second invariant, J0. First we need
to know the vortex velocities. For circle, the vortex velocity at z is given by (see Cai
et al. 2003)

u∞ − iv∞ = q

(
1 − 1

z2
1

)
− κ

2πi

(
1

z1 − 1/z∗
2

− 1

z1 − z2

− 1

z1 − 1/z∗
1

)
, (2.20)

where z1 and z2 are calculated by (2.18) for both symmetric and antisymmetric
modes. Substituting (2.20) into (2.11) gives the velocities of the vortex pair outside of
polygons. We calculate the Jacobian matrix, D, using a standard fourth-order accurate
finite-difference algorithm. Once D is obtained, we compute J0 by J0 = |D|.

Figure 7 shows J0 for hexagon, compared to J0 for circular cylinder. For the circular
case, on the Föppl line I, the vortex pair is neutral stable (J0 > 0) under symmetric
perturbations and unstable (J0 < 0) under antisymmetric perturbations, as already
shown by Cai et al. (2003). On the ∞ line, the vortex pair is always unstable (J0 < 0)
under both symmetric and antisymmetric perturbations.
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For hexagons, the stabilities for vortex pair at line I and the ∞ line are the same as
those of circular cylinder. On the closed line i, we observe that the stabilities depend
on ρ, the distance of the vortex to the origin, independent of perturbation modes.
The vortex pair is neutral stable when ρ < 1.131 while unstable when ρ > 1.131.

For the other polygons, we also find that the stabilities for vortex pair at the close
lines i, ii, . . . , are independent of perturbation modes. On these closed lines, the vortex
pair is neutral stable when ρ is less than a critical radius, ρcr , and unstable when
ρ > ρcr . This critical radius is shown in figure 8 for different closed stationary lines
outside of N-sided polygons. We find that a linear relationship between N · ρcr and
N for a certain closed stationary lines. For the critical radius for line i outside of
N-sided polygons, we find N · ρcr = 0.9577N + 0.9069 and ρcr =0.9577 + 0.9069/N .

3. Two-dimensional viscous flow past polygons
In this section we derive the equation of stream function ψ in the mapped (circle)

domain. Though it is not conformally invariant, it can be used to find the critical
Reynolds number and Strouhal numbers varying with N for steady and unsteady
flows, respectively (see § 3.2 and § 3.3).

3.1. Equation of stream function in mapped domain

The equation of stream function ψ for flow past polygons in physical domain can be
expressed as

ωt − J(ψ, ω) − 2

Re
∇2ω = 0, (x, y) ∈ DN, (3.1a)

ψ = 0, ∇ψ = 0, (x, y) ∈ ∂DN, (3.1b)

ψx = 0, ψy = 1,
√

x2 + y2 → ∞. (3.1c)

Here ω = −∇2ψ stands for the vorticity, and J(ψ, ω) = (ψ)x(ω)y − (ψ)y(ω)x
corresponds to the convection term. The Reynolds number, Re, is defined as
Re =(lref v∞)/ν, where v∞ is the incoming free-stream velocity; ν is the kinematical
viscosity; and lref is the reference length for polygons. Throughout this paper we use
lref =2Rmax , where Rmax is the radius of the circumscribed circle for polygon. Later
on in § 3.1 we also consider another possible choice.

Now we will transform this equation into the form in mapped domain (ξ, η) ∈ D̃.
The two domains have a relation described by a conformal mapping z = x
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+ iy = f (ζ ) = x(ξ, η) + iy(ξ, η). The differential relation between (x, y) and (ξ, η)
can be derived by Cauchy–Riemann condition (see (B 1)). Thus the Lame coefficient
for coordinate (ξ, η) satisfies hξ = hη = |f ′|. Thereupon, using these Lame coefficients,
we can transform the operators in (3.1) into the mapped domain,

∇2ψ = γ 2(∇̃2ψ), (3.2a)

∇4ψ = γ 2(∇̃2γ 2)(∇̃2ψ) + 2γ 2(∇̃2γ 2) · [∇̃(∇̃2ψ)] + γ 4(∇̃4ψ), (3.2b)

J(ψ, ∇2ψ) = γ 2(∇̃2ψ)J̃(ψ, γ 2) + γ 4J̃(ψ, ∇̃2ψ), (3.2c)

where γ 2 = 1/|f ′|2, the deformation factor, is given in Appendix B, and the operators
in mapped domain are defined as

∇̃ = (∂ξ , ∂η), ∇̃2 = ∂ξξ + ∂ηη, J̃(∗, ◦) = (∗)ξ (◦)η − (∗)η(◦)ξ . (3.3)

Now we derive the boundary conditions in the mapped domain. First we consider

the boundary condition at infinity,
√

ξ 2 + η2 → ∞. Since ψξ =ψxxξ + ψyyξ and
ψη = ψxxη + ψyyη, by using (3.1c) and the differential relationship (B 1), ψξ and
ψη at infinity can be simplified as

ψξ = Im[f ′(∞)], ψη = Re[f ′(∞)]. (3.4)

Since f ′(∞) = B =1/Υ according to (B 3) and (B 7), (3.4) reduces to

ψξ = 0, ψη = 1/Υ. (3.5)

Equation (3.5) is slightly different from (3.1c). In order to have the same form, we
define ψ̃ =Υ ψ as the stream function in mapped domain, so that (3.5) reduces to

ψ̃ξ = 0, ψ̃η = 1,
√

ξ 2 + η2 → ∞, (3.6)

which is the boundary condition at infinity in mapped domain. The boundary
condition at the wall,

ψ̃ = 0, ∇̃ψ̃ = 0, (ξ, η) ∈ ∂D̃, (3.7)

can be easily derived by using (3.1b).
Next we consider the equation of ψ̃ in mapped domain. Substituting ψ̃ = Υ ψ into

(3.2), we obtain

∇2ψ =
γ 2

Υ
(∇̃2ψ̃), (3.8a)

∇4ψ =
γ 2

Υ
(∇̃2γ 2)(∇̃2ψ̃) +

2γ 2

Υ
(∇̃2γ 2) · [∇̃(∇̃2ψ̃)] +

γ 4

Υ
(∇̃4ψ̃), (3.8b)

J(ψ, ∇2ψ) =
γ 2

Υ 2
(∇̃2ψ̃)J̃(ψ̃, γ 2) +

γ 4

Υ 2
J̃(ψ̃, ∇̃2ψ̃). (3.8c)

Substituting (3.8) into (3.1), eliminating the operators in physical domain and
multiplying the result by Υ 2/γ 4, we obtain

Υ

γ 2
(∇̃2ψ̃)t − J̃(ψ̃, ∇̃2ψ̃) − 2

Reeq

(∇̃4ψ̃)

=
2

Reeq

∇̃2γ 2

γ 2
(∇̃2ψ̃) +

4

Reeq

∇̃γ 2

γ 2
· [∇̃(∇̃2ψ̃)] +

1

γ 2
J̃(ψ̃, γ 2)(∇̃2ψ̃), (3.9)
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where

Reeq = Re/Υ (3.10)

will be called the equivalent Reynolds number. Defining the vorticity in mapped
domain as ω̃ = −∇̃2ψ , substituting it into (3.9) and replacing ∇̃2ψ̃ with −ω̃, we obtain
the vorticity-stream equation in the mapped domain,

Υ

γ 2
ω̃t − J̃(ψ̃, ω̃) − 2

Reeq

∇̃2ω̃ = S1 + S2 + S3, (3.11)

where

S1 =
2

Reeq

∇̃2γ 2

γ 2
ω̃, S2 =

4

Reeq

∇̃γ 2

γ 2
· (∇̃ω̃), S3 =

1

γ 2
J̃(ψ̃, γ 2)ω̃ (3.12)

are three additional source terms. Now we summarize the equation and boundary
conditions for the stream function in mapped domain:

Υ

γ 2
ω̃t − J̃(ψ̃, ω̃) − 2

Reeq

∇̃2ω̃ = S1 + S2 + S3, (ξ, η) ∈ D̃, (3.13a)

ψ̃ = 0, ∇̃ψ̃ = 0, (ξ, η) ∈ ∂D̃, (3.13b)

ψ̃ξ = 0, ψ̃η = 1,
√

ξ 2 + η2 → ∞. (3.13c)

For the circular situation, the equations in mapped and physical domains are the
same, which are

ωt − J(ψ, ω) − 2

Re
∇2ω = 0, (x, y) ∈ D∞, (3.14a)

ψ = 0, ∇ψ = 0, (x, y) ∈ ∂D∞, (3.14b)

ψx = 0, ψy = 1,
√

x2 + y2 → ∞. (3.14c)

The reference length in (3.14) is lref = 2R, where R is the radius of the circle.
The differences between (3.13) and (3.14) are divided into three parts:
(a) the Reynolds number in (3.14) is changed into an equivalent value Reeq = Re/Υ

in (3.13);
(b) a scaling factor γ 2/Υ appears before time derivative in (3.13);
(c) three additional source terms are added to the right-hand side of (3.13).
We have shown in Appendix B that Υ for each N-sided polygon is larger than

1 (see (B 7) and figure 21). Accordingly, the equivalent Reynolds number, Reeq , is
smaller than Re.

If we choose an N-dependent length scale for Re, then we will have a different
scaling factor. For instance, we may use lref =2Rmean with

Rmean = exp[(1/2π)

∫ π

−π

log R(ϕ) dϕ]. (3.15)

It can be proven that

Rmean = Rmax/Υ. (3.16)

In this way the equivalent or critical Reynolds number is the same as that for a
circle. The choice of different length scale does not affect the conclusions drawn in
this paper, though in general the critical values depend on the length scale and may
suggest different properties of the flow pattern (see Batchelor 1967).
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For the time-scaling factor, γ 2/Υ , we can easily obtain the distribution by dividing
(B 4) by (B 7). Figure 9 shows the distribution of γ 2/Υ in mapped domain. In most
regions not quite near the wall, especially far away from the wall, γ 2/Υ ≈ Υ .

The factor ∇̃2γ 2/γ 2 in source term S1 can be expressed as

∇̃2γ 2

γ 2
=

16

ρ2(ρ2N − 2ρN cos Nφ + 1)
(3.17)

(see Appendix B for the derivation). Figure 10 shows the distribution of ∇̃2γ 2/γ 2 in
mapped domain: ∇̃2γ 2/γ 2 tends to infinity at the apices, while it vanishes quickly far
away from walls. Figure 10(b) shows that ∇̃2γ 2/γ 2 vanishes linearly with increasing
ρ, the distance to the centre, in a double logarithmic figure, with a slope of −14,
corresponding to −2N − 2 for hexagon. This means the source term S1 is only
evident near the wall, while it vanishes approximately with the −2N − 2 power as
ρ increases.
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The source term S2 is expressed as the dot product of two gradient vectors ∇̃ω̃ and
∇̃γ 2/γ 2. The distribution of ∇̃γ 2/γ 2 in mapped domain can be expressed as

(γ 2)ρ
γ 2

= − 4

ρ

(
ρN cosNφ − 1

ρ2N − 2ρN cosNφ + 1

)
, (3.18a)

1

ρ

(γ 2)φ
γ 2

= − 4

ρ

(
ρN sinNφ

ρ2N − 2ρN cosNφ + 1

)
(3.18b)

(see Appendix B for the derivation). Figure 11 shows the direction and magnitude of
(∇̃γ 2)/γ 2 in mapped domain. The source term S2 is only significant near the wall and
vanishes approximately with the −N − 1 power as ρ increases.

The source term S3 is proportional to ω̃, with the proportional coefficient J̃(ψ̃, γ 2).
However, the convection is weak (ψ̃ξ ≈ 0, ψ̃η ≈ 0) in regions near the wall, and the
relative gradient γ 2 is weak in regions far from the walls.

Now we consider the possible roles of the equivalent Reynolds number, the time-
scaling factor and the three source terms.

Since the Reynolds number is replaced by the equivalent one, the flow around
polygons at a Reynolds number Re should be to some extent similar to the flow
around circular cylinder at the equivalent Reynolds number Reeq = Re/Υ . We will
show in § 3.2 and § 3.3 that the critical Reynolds numbers for separation and vortex
shedding are indeed related to the equivalent one.

The time-scaling factor should affect the frequency of the unsteadiness of the flow;
this will become clear in § 3.3.

The three source terms should have some role on the details of the flow and would
have some combined roles together with the equivalent Reynolds number and the
time-scaling factor. But their roles, in the critical Reynolds numbers and the frequency
of unsteadiness, should be minor as compared to the equivalent Reynolds number
and time-scaling factor. Hence, in the following analysis, we will omit the influence of
the three source terms. The qualitative conclusion based on the theoretical reasoning
will be supported or complemented by CFD. The CFD package solves the problem
in physical domain (not the transformed one) and is mainly used to check out or
complement the theoretical results.
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3.2. Steady flows past polygons

In this subsection, we first study the relationship in critical Reynolds numbers between
polygons and circles. Next we discuss the difference in flow patterns between polygons
and circles, including location of bifurcation points, streamline topologies before or
after bifurcations.

3.2.1. First critical Reynolds number

We have shown that in the mapped domain, the Reynolds number for polygons
is replaced by the equivalent one, Reeq = Re/Υ , comparing Re for circles. Hence we
conjecture that the critical Reynolds number would be determined by the equivalent
ones, i.e. Reeq,cr1 = Re(∞)

cr1 . This means that

Re(N)
cr1 ≈ Υ Re(∞)

cr1 =
N

π
sin

(
N − 1

N
π

)
Γ

(
N − 1

N

)2

Γ

(
N + 2

N

)
Re(∞)

cr1 , (3.19)

where Re(N)
cr1 and Re(∞)

cr1 are the first critical Reynolds numbers for an N-sided polygon
and circular cylinder respectively. According to figure 21 in Appendix A, Υ in (3.19)
is larger than unit and is a monotonically decreasing function of N . As N → ∞, Re(N)

cr1

asymptotically tends to Re(∞)
cr1 . For example, the difference between Re(N)

cr1 and Re(∞)
cr1 is

less than 5 % when N � 8 and is less than 1 % when N � 18. Since Υ > 1, (3.19) means
that flow around polygons separates at a Reynolds number larger than that around
a circular cylinder, and the critical Reynolds number is a monotonically decreasing
function of N . In order to see if this is indeed so, we display in figure 12 the critical
Reynolds numbers obtained by CFD (Appendix C). We observe that the CFD result
follows qualitatively with (3.19).

3.2.2. Locations of vortex cores and bifurcation points

Now we use CFD to analyse the location of vortex cores and bifurcation points. For
circular cylinder, we know that when Re reaches Recr1 ≈ 6, a pair of counter-rotating
separation bubbles firstly appear at the rear stagnation point. As Re increases, the
recirculation regions grow larger, and the separation points move ahead. For polygons,
we also find these phenomena, while some details are different.

Figure 13(a) shows the position of vortex cores at different Reynolds numbers
for flow past circles and hexagons in mapped domain. We find that the vortex
cores outside of hexagons are slightly higher than those outside of circles. Moreover,
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the vortex cores for hexagons do not approach to the rear stagnation point as Re
decreases but some point at the last edges, away from the rear stagnation point.

The intersection point of the line of vortex cores at different Reynolds numbers
with the wall coincides with the bifurcation point, where separation firstly appears.
According to figure 13(a), the bifurcation point for hexagons is not the same as that
for circles. For the other polygons, we also find that the bifurcation point locates at
some point ahead of the rear stagnation point (see figure 13b).

The difference of locations of bifurcation points is concerned with the surface
shear stress. Figure 14 shows the surface shear stress coefficient on the aft half
parts of surfaces for hexagon and circular cylinder according to CFD results. Before
bifurcation, corresponding to figure 14(a), we find that a local minimum value
appears for hexagon at Re = 6.5 before the rear stagnation point. This minimum
value decreases as Re increases, and when a negative value is first reached, the
separation starts. After bifurcation, corresponding to figure 14(b), there are two
zero points of surface shear stress coefficient on hexagon surface, corresponding to
separation and reattachment, respectively.
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3.2.3. Flow patterns

According to CFD results, the reattachment point is at the surface of polygons,
when Re is slightly higher than the critical Reynolds number. However, for circles,
the separated flow can only reattach at the symmetric axis behind the circles, and
no reattachment is found on the surface. Figure 15 shows the different flow patterns
for polygons and circles at different Reynolds numbers: Re(A)

cr1 represents the critical

Reynolds number when the separation firstly appears, and Re(B)
cr1 represents the

Reynolds number when the reattachment point coincides with the rear stagnation
points. Beyond Re(B)

cr1, no reattachment point can be found on the surface of polygons.
For example, the flow past hexagons at Re =7 is shown in figure 15, and we can find
both the separation point and the reattachment point at the last edge. For circles, the
two Reynolds numbers, Re(A)

cr1 and Re(B)
cr1, have the same value. As a result, the flow

patterns with both separation and reattachment on the surface do not exist for flow
past circles.

Next we shortly describe the streamline topologies before and after bifurcation.
Brøns et al. (2007) studied the transition of streamline topologies for circular cylinders,
and this transition can be described by a real parameter. When this parameter becomes
negative from a positive number, the symmetric double-separation regions formed.
They summarized the bifurcation as in figure 16(a), where the bifurcation point is
at the rear stagnation point B . Before bifurcation, there is no critical point ahead of
B , the bifurcation point, which is also a degenerated critical point. After bifurcation,
there is only one saddle point on the wall, representing the separation, ahead of B .

For polygons, the bifurcation point is at A, ahead of B; we summarize this in
figure 16(b). The bifurcation point A is not a critical point neither before nor
after bifurcation. Before bifurcation, there is no critical point ahead of B , the rear
stagnation point. However, slightly after bifurcation, there are two saddle points on
the wall, ahead of B , representing the separation and reattachment, respectively.

We have shown that the Reynolds number for polygons in mapped domain is
replaced by an equivalent one, Reeq = Re/Υ , and have conjectured the relationship for
the critical Reynolds number (see (3.17)). However, the equivalent Reynolds number
does not yield any difference, such as bifurcation point and streamline topology, in



Two-dimensional flow past polygons 139

Circles Polygons

Critical Reynolds number Re(∞)
cr1 ≈ 6 Re(N)

cr1 ≈ Υ Re(∞)
cr1

Bifurcation point Rear stagnation point Some point in the last edge,
ahead of the rear stagnation point

Streamline topologies One saddle point Two saddle points

near surface (Re > Re(∞)
cr1 ) (Re(A)

cr1 < Re <Re(B)
cr1)

One saddle point

(Re > Re(B)
cr1)

Table 1. Differences on appearance of separation between polygons and circles.
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Figure 16. Bifurcation modes and streamline topologies near bifurcation points for (a) circles
and (b) polygons, where the horizontal line represent the wall; the vertical line represents the
symmetric plane; B is the rear stagnation point; A is a point ahead of B; and (i), (ii), and (iii)
represent the regions in figure 15.

flow patterns between polygons and circles. We thus conjecture that this difference is
caused by the non-null right-hand side of (3.11).

We summarize the differences between polygons and circles, on the appearance of
separation, in table 1.

3.3. Unsteady flows past polygons

In this subsection we study the unsteady flow past polygons, addressing the
relationships of flow features between polygons and circles, including Strouhal
numbers, second critical Reynolds numbers and eigenvalues of the evolution of
perturbations.

3.3.1. Strouhal numbers

Due to the appearance of the time-scaling factor in (3.14), we conjecture that
the global Strouhal number for flow past polygons with a Reynolds number, Re, is
approximately Υ times of that for the circular situation with a Reynolds number,
Reeq . The Strouhal number for flow past circular cylinders has been widely studied;

e.g. Fey et al. (1998) proposed a linear relationship between St∞ and Re−1/2 based on
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experiments:

St∞ = 0.2684 − 1.0356/
√

Re, (47 < Re < 180). (3.20)

According to the above reasoning, we can replace Re in (3.20) with Re/Υ and
multiply the result by Υ to obtain the Strouhal number for N-sided polygons. The
expression thus obtained is

StN ≈ Υ

(
0.2684 − 1.0356

√
Υ

Re

)
, (47 < Re/Υ < 180), (3.21)

where Υ is given by (B 7). Figure 17 displays the relationship between the Strouhal
number and the Reynolds number. We also show the difference of Strouhal number
between polygons and circular cylinders, StN − St∞, varying with Re−1/2. The lines
in figure 17 are calculated by (3.21) and (3.20), while the points in the figure are
measured from the CFD results, using a fast Fourier transform (FFT). We find
from both the estimated results and the CFD results that the Strouhal numbers for
polygons are monotonically decreasing functions of N . In figure 17, we find good
coincidence between the estimated and CFD results for polygons with larger number
of edge, e.g. N = 10, 12, 20, while for N = 6, 8, the estimated results are larger than
the CFD results.

3.3.2. Relations on eigenvalues between polygons and circles

The transition from steady flow to unsteady flow belongs to a Hopf bifurcation
with a complex characteristic parameters, σ = σr + iσi . The real part σr represents the
linear growth rate of perturbation, while the imaginary part σi represents the linear
angular frequency. In order to analyse the relations of eigenvalues between polygons
and circles, we recall the eigenvalue analysis for the circular situation (see Dušek et al.
1994).

The stream function is decomposed as ψ = ψ0 + ϕ, where ψ0 is the steady solution
and ϕ is the perturbation. Both ψ and ψ0 satisfy (3.14), so that

(Sϕ)t + L[Re]ϕ + R(ϕ, ϕ) = 0, (3.22)
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where S denotes the Laplacian operator ∇2 and L and R denote linear and quadratic
operators, respectively. These operators are expressed as

S = ∇2, (3.23a)

L[Re]ϕ = −J(ψ0, ∇2ϕ) − J(ϕ, ∇2ψ0) − 2

Re
(∇4ϕ), (3.23b)

R(ϕ, ϕ) = −J(ϕ, ∇2ϕ). (3.23c)

The instability of the infinitely small perturbation ϕ depends linearly on the
eigenfunction of the problem:{

L[Re] +
(
σ (j )

r ± iσ (j )
i

)
S

}
φ

(j )
± = 0 (j = 1, 2, . . .), (3.24)

where φ
(j )
± denotes the eigenfunction corresponding to the j th complex eigenvalue,

σ (j )
r ± iσ (j )

i . If σ (j )
r is positive, the perturbation with an angular frequency σ

(j )
i will

amplify itself, and the steady flow will transform to the unsteady flow. Denote
σ = σr + iσi as the eigenvalue with the largest real part. This can be regarded as the
characteristic parameter of the Hopf bifurcation.

According to Schumm, Berger & Monkewitz (1994), the eigenvalue σ = σr +iσi has
a linear relationship with the ‘distance from criticality’, Re − Recr2, when the system
slightly exceeds the bifurcation point. By definition, the critical Reynolds number
Re(∞)

cr2 satisfies σr (Re(∞)
cr2 ) = 0; hence one can expand σr (Re) and σi(Re) at Recr2 as

σr (Re) = k(∞)
r

(
Re − Re(∞)

cr2

)
, (3.25a)

σi(Re) = σ
(∞)
i,0 + k

(∞)
i

(
Re − Re(∞)

cr2

)
. (3.25b)

Here σ
(∞)
i,0 = σi(Re(∞)

cr2 ), k(∞)
r and k

(∞)
i are the first-order derivative of σr (Re) and σi(Re)

at Recr2.
For polygons, we follow the same analysis and decompose the stream function in

mapped domain as ψ̃ = ψ̃0 + ϕ̃. Both ψ̃ and ψ̃0 satisfy (3.13). Subtracting them, we
obtain the equation for the perturbation ϕ̃:

Υ

γ 2
(Sϕ̃)t + L[Reeq ]ϕ̃ + R(ϕ̃, ϕ̃) = L̂[Reeq ]ϕ̃ + R̂(ϕ̃, ϕ̃), (3.26)

where S, L and R are the same as circles if we drop the superscript ‘∼’ and change

Reeq to Re. However, the additional linear and quadratic operators L̂ and R̂ on the
right-hand side of (3.26), which comes from the additional source terms in (3.13), are
expressed as

L̂[Reeq ]ϕ̃ =
2

Reeq

(
∇̃2γ 2

γ 2

)
(∇̃2ϕ̃) +

4

Reeq

(
∇̃γ 2

γ 2

)
· [∇̃(∇̃2ϕ̃)]

+
1

γ 2
J̃(ψ̃0, γ

2)(∇̃2ϕ̃) +
1

γ 2
J(ϕ̃, γ 2)(∇2ψ̃0), (3.27a)

R̂(ϕ̃, ϕ̃) =
1

γ 2
J(ϕ̃, γ 2)(∇2ϕ̃). (3.27b)

The corresponding linear eigenvalue problems for polygons and circles are given by

{
L[Reeq ] − L̂[Reeq ] +

Υ

γ 2

(
σ̃ (j )

r ± iσ̃ (j )
i

)
S

}
φ̃

(j )
± = 0 (j = 1, 2, . . .), (3.28a)
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Figure 18. Evolution of perturbation for hexagons at Re = 55: (a) amplified
rate versus |A|2; (b) θ̇ versus |A|2.

where φ̃
(j )
± denotes the eigenfunction corresponding to the j th complex eigenvalue

σ̃ (j )
r ± iσ̃ (j )

i for polygons. Suppose σ̃r + iσ̃i for polygons is the eigenvalue with the
largest real part.

From (3.28a) it is clear that the eigenvalues for polygons differ from those for
circles because of three factors: (i) time-scaling factor γ 2/Υ , (ii) equivalent Reynolds

number Reeq and (iii) additional linear operator L̂[Reeq ] due to source term. As
stated in the end of § 3.1, the influence due to source term is not considered in this
paper.

Replacing Re in (3.24) with Reeq and comparing the result with (3.28a) we obtain
the following relationship of eigenvalues:

σ̃r (Re) + iσ̃i(Re) = Υ [σr (Reeq ) + iσi(Reeq )]. (3.29)

Substituting (3.25) into (3.29) and replacing Reeq by Re/Υ , we obtain the real and
imaginary parts of eigenvalues for polygons:

σ̃r (Re) = k(∞)
r

[
Re − Υ Re(∞)

cr2

]
, (3.30a)

σ̃i(Re) = Υ σ
(∞)
i,0 + k

(∞)
i

[
Re − Υ Re(∞)

cr2

]
. (3.30b)

Equation (3.30) means that the eigenvalues depend linearly on Υ . This linear property
will be checked by CFD below.

The eigenvalues can be obtained using the time evolution of the lift coefficients given
by CFD (see Thompson & Gal 2004). This is done as follows: Suppose a complex
perturbation is expressed as A(t) = |A|(t)eiθ(t), where |A| and θ are its amplitude and
phase angle. The time evolution of the complex amplitude function |A| and θ can be
written as (see Thompson & Gal 2004).

d ln |A|
dt

= σ̃r (1 − cr |A|2), θ̇ = σ̃i − σ̃rci |A|2, (3.31)

where cr and ci are functions of |A|2. Here we use the lift coefficient (obtained
by CFD) as the global perturbation. Its complex value is obtained by a Hilbert
transformation. Figure 18 shows the logarithmic derivative of the amplitude and the
angular frequency on the square of the amplitude, and the intercepts are σ̃r and σ̃i

respectively.
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Figure 19. Eigenvalues for flow past polygons and circular cylinders: (a) σ̃r versus Re;
(b) σ̃i versus Re; (c) σ̃r versus Υ ; (d ) σ̃i versus Υ .

Using this method, we can find the relationship between the eigenvalues σ̃r + iσ̃i

and Re. Figure 19(a, b) displays the eigenvalues thus obtained, for both polygons and
circles. The amplified rate σ̃r for polygons is slightly smaller than that for circles, while
the angular frequency σ̃i is larger than that for circles. A linear relationship between
eigenvalues and Υ is found (see figure 19c, d). This confirms the linear relation as in
(3.30). Thus, the differences of eigenvalues between polygons and circular cylinders
vanish linearly as Υ limits to unit (as N increases).

3.3.3. Critical values: second critical Reynolds numbers and linear angular frequencies

We use (3.30) to get the second critical Reynolds number for polygons. Setting
σ̃ (Re(N)

eq2) = 0 in (3.30a), we obtain

Re(N)
cr2 = Υ Re(∞)

cr2 =
N

π
sin

(
N − 1

N
π

)
Γ

(
N − 1

N

)2

Γ

(
N + 2

N

)
Re(∞)

cr2 . (3.32)

Equation (3.32) can also be obtained similarly as for the first critical Reynolds number
through the use of equivalent Reynolds number. Setting Re = Re(N)

cr2 in (3.30b), we find

σ
(N)
i,0 = Υ σ

(∞)
i,0 =

N

π
sin

(
N − 1

N
π

)
Γ

(
N − 1

N

)2

Γ

(
N + 2

N

)
σ

(∞)
i,0 . (3.33)

In order to check the above results, we use CFD to obtain Re(N)
cr2 and σ

(N)
i,0 (see

Sohankar 2007). Once σ̃r + iσ̃i is obtained by CFD combined with (3.31) for various
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Shape N Υ Re(N)
cr2 σ

(N)
i,0

Hexagon 6 1.0865 47.9890 0.3922
Octagon 8 1.0448 46.6910 0.3835
Decagon 10 1.0314 46.1826 0.3801
Dodecagon 12 1.0219 45.8715 0.3777
Icosagon 20 1.0080 45.5801 0.3736
Circle ∞ 1.0000 45.1464 0.3714

Table 2. Comparison amongst N -sided polygons and circular cylinder about critical
Reynolds numbers and linear angular frequencies.
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Figure 20. The critical values, (a) Re(N )
cr2 , (b) σ

(N )
i,0 , for various N -sided polygons.

Reynolds numbers, we build a fitted function between σ̃r + iσ̃i and Re. Then we
calculate the critical Reynolds number Re(N)

cr2 by setting σ̃r (Re(N)
cr2 ) = 0, as well as σ

(N)
i,0 ,

the value of σ̃i(Re) at Re(N)
cr2 . The fitted values for Re(N)

cr2 and σ
(N)
i,0 are given in table 2.

We see that Re(N)
cr2 and σ

(N)
i,0 for polygons are both monotonically decreasing functions

of N .
Figure 20 shows Re(N)

cr2 and σ
(N)
i,0 in table 2 for each N-sided polygon. From

figure 20(a), we find that (3.32) slightly overestimated Recr2 and σi,0 as compared to
CFD. But the qualitative agreement is well. Hence the critical Reynolds number for
polygon is a monotonically decreasing function of N .

4. Conclusions
In this paper, we have studied the two-dimensional inviscid flow and low-Reynolds-

number viscous flow past regular polygons, which have arbitrary but even numbers
of edges and have one apex pointing to the incoming free stream. We have compared
the flow past polygons with that past circular cylinders.

For the pure potential flow past polygons, an explicit formula exists for the pressure
coefficient, and this is given by (2.3). Compared to the case of circular cylinder which
only exhibits smooth flow, singularity around each apex is observed. The intensity of
the singularity weakens when N increases, which can be seen through the N-variation
of the radius ρ of the low-pressure region and of the global pressure difference �Cp

along the surface, satisfying ρ ∼ e−N and �Cp
∼ 1/N (for N large enough) respectively.
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The relationship between vortex motion for polygons in mapped domain, and
that of circular cylinders is given by (2.15). Comparing with the circular situation, a
rotation by the additional velocities and a scaling by γ 2 are added to the polygonal
situation.

There are some additional closed lines for a univalent stationary vortex pair for
separated flow polygons. These lines start from one apex and end at a certain edge or
another apex. The stabilities on these lines are concerned with ρ, the distance to the
centre, independent of perturbation modes. The vortex pair is neutral stable when ρ

is less than a critical distance, while it is unstable when ρ is larger than that.
For the viscous flow past polygons, we derived equation of the stream function in the

mapped (circle) domain (see (3.13)). Through this equation, we see that, compared to
circular cylinders, the time scale is multiplied by Υ ; the Reynolds number is replaced
by the equivalent Reynolds number, Reeq = Re/Υ ; and three additional source terms
appeared.

For the steady separated flow, we found the critical Reynolds number, based
on the diameter of the circumscribed circular cylinder, is given by Re(N)

cr1 ≈ Υ Re(∞)
cr1 .

It is a monotonically decreasing function of N . The CFD result follows roughly
well, though not exactly, with Re(N)

cr1 ≈ Υ Re(∞)
cr1 . For example, Recr1 ≈ 6.64 for a

hexagon, corresponding to Recr1 ≈ 6.02 for circular cylinder. The bifurcation point
at which separation first appears for polygons locates on the last edge, in contrast
with the circular-cylinder case, for which the bifurcation point locates at the rear
stagnation point. When Re is slightly larger than the first critical Reynolds number,
reattachment is found on the surface of polygons, while for circular cylinders, there
is no reattachment on the surface. The bifurcation point is a function of N (see
figure 13).

For the unsteady flow, we found the critical Reynolds number and Strouhal
number, based on the diameter of the circumscribed circular cylinder, are given
by Re(N)

cr2 ≈ Υ Re(∞)
cr2 and StN ≈ Υ

(
0.2684 − 1.0356

√
Υ/Re

)
, respectively. They are both

monotonically increasing functions of N; for example, Recr2 ≈ 48 for a hexagon, and
Recr2 ≈ 44.42 for circular cylinder. The Strouhal numbers at critical Reynolds number
for a hexagon and circular cylinder are 0.1226 and 0.1142, respectively.

Now we outline some subjects which need further study.
We know that the flow for higher Reynolds numbers is three-dimensional (see

Coutanceau & Daefaye 1991; Williamson 1996). For the circular case, two modes
exist: mode A appears at ReA ≈ 188–190 with a spanwise wavelength about 3D–4D,
and mode B appears at ReB ≈ 230–260 with a spanwise wavelength about D, where
D stands for the diameter (see Zhang et al. 1995; Barkley & Henderson 1996;
Williamson 1996). Square cylinder also has two transition modes, A and B (see
Sohankar, Norberg & Davidson 1999; Luo, Chew & Ng 2003). For the square
case, based on the Floquet instability analysis by Robichaux, Balachandar & Vanka
(1999), ReA = 162 and ReB =190, with the wavelength 5.22Ds and 1.2Ds separately,
where Ds stands for the side length of square cylinder. According to the numerical
results by Saha, Biswas & Muralidha (2003), ReA = 150–175 with the wavelength 3Ds ,
and ReB > 240 with the wavelength 1.2Ds–1.4Ds . As Re further increases, the flow
past cylinders will experience shear layer transition and boundary layer transition
and finally form turbulence flow. For polygons with more edges, the condition for
transition and the different modes should be further studied.

In this paper, we didn’t consider polygons with one edge facing the free stream
and polygons with odd number of edges. According to known results for triangle
(odd number) and square (one edge facing the free stream), the corresponding flow
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may be quite different. For example, for square cylinder, N = 4 and Υ = 1.1981, the
use of (3.19) would give Re(4)

cr1 ≈ 7.2, while Franke (1991) obtained Re(4)
cr1 < 1. The

difference comes from the square cylinder in Franke (1991) having an edge facing
the free stream, in contrast with the present paper for which an apex points to the
free stream. For the polygon with odd number of edges, e.g. triangular cylinder, N = 3
and Υ = 1.2866, the use of (3.19) would give Re(3)

cr1 ≈ 7.7 if we had suppose it to be

valid for odd edge numbers, while in reality the recirculation length at Re(3)
cr1 is 0.58

times of the base length, according to the fit formula by De & Dalal (2006), and
this means the flow has already separated. Hence, further studies on the effect of
orientation of incoming flow and odd number of edges are needed for polygons with
more edges. The drag coefficient and recirculation length for polygons with arbitrary
N also need be studied in the future.

We would like to thank the referees for their useful comments concerning the use
of reference length, conformal mapping and the like. Equation (3.15) was provided by
one of the reviewers. This work has been supported by the 211 and the 985 Program
of Tsinghua University.

Appendix A. Schwarz–Christoffel mapping of the exterior of unit circle into the
exterior of its inscribed regular polygon with even number of edges

The Schwarz–Christoffel transformation is a complicated integral expression for an
arbitrary polygon. Sandy (1970) expanded this integral into a summation of series
with under-determined coefficients using a binomial theorem. For the regular polygon
with even number of edges inscribed on a unit circle, we show that the coefficients
can be expressed explicitly with the edge number, N .

The Schwarz–Christoffel mapping of the unit circle onto the outside of a general
N-sided polygon is

z = f (ζ ) = A + B

∫ ζ

1

N∏
k=1

(
1 − ak

ζ

)βk

dζ, (z ∈ DN, ζ ∈ D̃), (A 1)

where A is a translation constant; B is a complex constant whose magnitude allows for
a magnification and its argument for a rotation; ak is a point on |ζ | =1 corresponding
to the kth apex of the polygon; and βkπ is the exterior angle of kth apex of the polygon,
(k =1, 2, . . . , N).

By central symmetry for regular polygons, the coefficient ak and βk , k = 1, 2, . . . , N ,
satisfy

∏
ak =1 and βk = 2/N ≡ β . Substituting these into (A 1), the integrand function

can be simplified and expanded by the binomial theorem into a series, which gives

N∏
k=1

(
1 − ak

ζ

)βk

=

(
1 − 1

ζN

)2/N

≡ 1 +
ε1

ζN
+

ε2

ζ 2N
+

ε3

ζ 3N
+ · · · , (A 2)

where εk = (2/N

k
) is the binomial coefficient. Substituting (A 2) into (A 1) and

integrating the result term by term, we obtain

z = f (ζ ) = A + B

(
ζ +

e1

ζN−1
+

e2

ζ 2N−1
+

e3

ζ 3N−1
+ · · ·

)
, (A 3)

where

ek =
(−1)k−1

kN − 1

(
2/N

k

)
=

(−1)k−1

kN − 1

Γ (2/N + 1)

Γ (k + 1)Γ (2/N − k + 1)
(k = 1, 2, . . .). (A 4)
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Figure 21. Coefficients in Schwarz–Christoffel mapping formula for various
inscribed polygons: (a) ek; (b) B .

For the regular polygons considered in this paper, two opposite apices lie in the
horizontal symmetric axis, which means ±1 = f (±1). Substituting the two conditions
into (A 3), the coefficient A and B can be solved as A= 0 and

B =

[
N

π
sin

(
N − 1

N
π

)
Γ

(
N − 1

N

)2

Γ

(
N + 2

N

)]−1

. (A 5)

Figure 21 shows ek and B varying with N and k. It can be seen that B approaches
one with increasing N , which represents the geometrical approximation from polygons
to circles as the increasing of edge number.

In summary the Schwarz–Christoffel mapping of the exterior of the unit circle into
the exterior of its N-sided inscribed regular polygon is expressed as

z = f (ζ ) = B

(
ζ +

e1

ζN−1
+

e2

ζ 2N−1
+

e3

ζ 3N−1
+ · · ·

)
, (A 6)

where B is calculated by (A 5) and ek is calculated by (A 4).

Appendix B. Deformation factor
In this appendix, we derive the expression for the deformation factor γ 2 and for

some of its combinations.
When the unit circle in mapped domain ζ = ξ + iη ∈ D̃ is mapped into its

N-sided inscribed regular polygons in physical domain z = x + iy ∈ DN by Schwarz–
Christoffel mapping z = f (ζ ), this mapping deforms the space under a certain rule.
This deformation can be described as a gradient matrix G

G =
∂(x, y)

∂(ξ, η)
=

(
xξ xη

yξ yη

)
=

(
Re(f ′) −Im(f ′)

Im(f ′) Re(f ′)

)
, (B 1)

where the last equality is derived by Cauchy–Riemann condition. Hence xξ = yη =
Re(f ′) and yξ = −xη =Im(f ′). Decompose the gradient matrix (B 1) into a symmetric
matrix S and an antisymmetric matrix Ω , which are expressed as S = Re(f ′)� and
Ω =Im(f ′)�, where � is a 2 × 2 unit matrix and � is a 2 × 2 unit symplectic matrix.
The symmetric matrix S represents an isotropic stretch without shear, while the
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Figure 22. (a) Contour and (b) radial distribution of deformation factor, γ 2,
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antisymmetric matrix Ω represents a rotation. The deformation factor γ 2, which is
defined by γ 2 = 1/|f ′|, is related to S and Ω by

S2 − Ω2 = |f ′2|� =
1

γ 2
� =

( 1
γ 2 0

0 1
γ 2

)
. (B 2)

Now we discuss the distribution of deformation factor γ 2 in mapped domain.
According to (A 1) and (A 2), the derivative of Schwarz–Christoffel mapping z = f (ζ )
can be expressed as

f ′(ζ ) = B

(
1 − 1

ζN

)2/N

. (B 3)

Substituting (B 3) and (A 5) into γ 2 = 1/|f ′| and using ζ = ρeiφ , we obtain the explicit
equation for γ 2:

γ 2 =
1

B2

(
1 − 2 cosNφ

ρN
+

1

ρ2N

)−2/N

. (B 4)

Figure 22 shows the distribution of γ 2 in mapped domain for hexagons. As can be
seen from figure 22(a), a maximum value is reached at φ = 0◦, 60◦, representing the
apices of hexagons, while a minimum value is reached at φ = 30◦, representing the
midpoint of the edges. When ρ increases, γ 2 quickly approaches γ 2

∞, its value at
infinity. Expanding (B 4) by Taylor expansion for ρ � 1, we obtain

γ 2 =
1

B2
+

4 cosNφ

NB2ρN
+ . . . ≈ 1

B2
(ρ � 1), (B 5)

where the residual vanishes with the −N power as the increase of ρ. We denote

Υ = lim
ρ→∞

γ. (B 6)

Using (B 5) and (A 5), we find

Υ =
1

B
=

N

π
sin

(
N − 1

N
π

)
Γ

(
N − 1

N

)2

Γ

(
N + 2

N

)
. (B 7)

For all polygons, we have B < 1 and Υ 2 > 1.
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The expressions

∇̃2γ 2

γ 2
=

16

ρ2(ρ2N − 2ρN cos Nφ + 1)
(B 8)

and

(γ 2)ρ
γ 2

= − 4

ρ

(
ρN cosNφ − 1

ρ2N − 2ρN cosNφ + 1

)
, (B 9a)

1

ρ

(γ 2)φ
γ 2

= − 4

ρ

(
ρN sinNφ

ρ2N − 2ρN cosNφ + 1

)
(B 9b)

have been used in § 3.1. They can be easily derived by using (B 4).
The relationship between f ′′/f ′ and gradients of γ 2,(

f ′′

f ′

)
p

=
1

2

[
− (γ 2)ξ

γ 2
+ i

(γ 2)η
γ 2

]
p

, (B 10)

has been used in § 2.2.1 and is derived below.
Let f ′(ζ ) = a(ξ, η) + ib(ξ, η), where a and b are the real and imaginary parts of f ′,

respectively. Through Cauchy–Riemann relation, we write f ′′ = aξ + ibξ = bη − iaη. So
we get

f ′′

f ′ =
aaξ + bbξ

a2 + b2
− i

aaη + bbη

a2 + b2
. (B 11)

Substituting f ′ = a + ib into γ 2 = 1/|f ′|, we have

γ 2 =
1

|f ′|2 =
1

a2 + b2
. (B 12)

Using (B 12), we can easily obtain

(γ 2)ξ
γ 2

= −2
aaξ + bbξ

a2 + b2
,

(γ 2)η
γ 2

= −2
aaη + bbη

a2 + b2
. (B 13)

Inserting (B 13) into (B 11), we obtain (B 10).

Appendix C. CFD used in this paper
The flow past polygons in this paper belongs to laminar flow with a low Reynolds

number, which is relatively simple to simulate by CFD. Various CFD methods or
softwares should yield the same results if the boundary conditions are properly
defined and if the grid is refined enough. In this paper, we have used the commercial
software FLUENT, because of its wide accessibility, to solve the two-dimensional,
incompressible, laminar Navier–Stokes equations, where the temporal term is given
by a second-order discretization method, and the spatial discretization is given by a
third-order MUSCL scheme.

Below we use known results to demonstrate how computation is done in this paper
and what its accuracy is. We have been very careful about the accuracy or grid
convergence of the CFD computation. We use a 28D × 16D computational domain
(see figure 23a), where D is the diameter of circumscribed circles of polygons. The
mesh used in this paper is displayed in figure 23 for hexagons. It contains 79 000
grids. The height of the first cell at polygon surface is 0.001D, with a stretching
factor of 1.05 in the normal direction of polygon-wall inside regions, and 360 points
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Figure 23. Sketch of the (a) computational domain, boundary conditions and (b) mesh
grids for flow past polygons, e.g. hexagons

are located on the circumference of the polygons. Near the walls of polygons, the
grids are meshed in a rectangle outside of each edge, for good orthogonality. Further
refinement of the mesh grids and increase in the computational domain do not change
the results.

The boundary conditions used in this paper are shown in figure 23(a) and are
similar to those in Wu et al. (2004). A uniform flow condition is given at the inlet
on the left-hand side of the computational domain, e.g. u = U∞ and v = 0. On the top
and bottom sides, symmetric boundary conditions are given, e.g. uy = 0 and vy =0.
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Figure 24. CFD results for flow past circles: (a) drag coefficient; (b) base pressure coefficient;
(c) separation angle; (d ) Strouhal number; (e) linear amplified rate; and (f ) linear angular
frequency.

On the right-hand side, a fully developed condition is used for the outflow of the
velocity. On the polygons surface, the no-slip boundary condition u = v = 0 is given.

Now we use the method above to compute the flow past circular cylinder to check
whether the result is accurate enough compared with the known results. Figure 24
shows the results for circles, including (a) drag coefficient, (b) base pressure coefficient,
(c) separation angle, (d ) Strouhal number, (e) linear amplified rate and (f ) linear
angular frequency. The results are very close to the known results.

In this paper, the same method has been used to compute the steady and unsteady
flows past 6-, 8-, 10-, 12-, 20-sided regular polygons.
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